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Generation of Melamine Polymer Condensates upon Hypergolic Ignition 
of Dicyanamide Ionic Liquids 

Konstantin Chingin, Richard H. Perry, Steven D. Chambreau, Ghanshyam L. Vaghjiani, and Richard 
N. Zare* 

Fuels that can be ignited chemically under ambient conditions --
upon contact with an oxidizing agent -- are referred to as 
hypergols.[1] Engines powered by hypergols do not require electric 
ignition, making them simple, robust and reliable alternatives to 
conventional fossil fuels. Commonly used hypergolic fuels include 
hydrazine and its methylated derivatives, which are extremely toxic, 
corrosive, and have high vapor pressure. Intense research is 
underway to develop alternative environmentally friendly liquid 
propellants with lower toxicity to reduce operational costs and 
safety requirements associated with handling hydrazine.[2] Ionic 
liquids (ILs)[3] have recently received considerable attention as 
energetic materials for propellant applications due to lower vapor 
pressures, higher densities and, often, an enhanced thermal stability 
compared to their nonionic analogues.[4] Since 2008, a number of 
ILs have been reported to be hypergolic when reacted with common 
oxidizers, such as HNO3.

[5-7] Of particular practical interest are 
hypergolic ILs comprising fuel-rich dicyanamide (DCA) anions.[5] 
DCA ILs have some of the lowest viscosities among known ILs,[8] 
which is a very important figure of merit for the efficient fuel supply 
in bipropellant engines. 

In this study, using electrospray ionization mass spectrometry 
(ESI-MS), we discovered that the reaction between DCA ILs and 
HNO3 yields a precipitate that is composed of cyclic triazines, 
including melamine and its polymers. The concurrent formation of 
precipitate siphons materials from the hypergolic reaction 
pathway,[6] limiting the energy capacity of a fuel. Furthermore, the 
generation of stable solid-state species during the ignition indeed 
represents a serious problem for the safe operation of bipropellant 
engines. We propose a mechanism for the formation of the major 
polymers via thermal decomposition of DCA ILs, mediated by nitric 
acid. The reaction of DCA ILs with HNO3 represents a new method 
to synthesize cyclic azines, which can be tuned by choosing various 
different IL precursors. 

The condensate was found to be very poorly soluble in water as 
well as in a set of organic solvents, including dichloromethane, 
acetonitrile, chloroform, methanol, toluene, ethyl acetate, and 

diethyl ether. The solubility dramatically increased, however, in 
ammonium hydroxide (10% vol), suggesting the high content of 
nitrogen atoms in the species constituting the precipitate. 

Figure 1 shows positive and negative ion mode mass spectra of 
the precipitate formed in the reaction between 1-butyl-3-methyl-
imidazolium dicyanamide and white fuming HNO3 (WFNA, ~ 
100%) after dissolution in ammonium hydroxide. Note that all the 
peaks in Figure 1 were also observed from the liquid phase of the 
residue suspension in pure water without ammonia, although at a 
considerably lower intensity caused by its much reduced solubility. 
Consequently, we can exclude the possible origin of these peaks as a 
result of chemical reaction between the residue and ammonia. 

 
Figure 1. ESI-MS of the precipitate formed during the reaction 

between 1-butyl-3-methylimidazolium dicyanamide and WFNA. The 

precipitate was dissolved in an aqueous solution of ammonia (10% 

vol) and analyzed directly in positive (a) and negative (b) ion detection 

modes. 

 

Scheme 1 summarizes the results of tandem MS analysis for 
each peak. We observe common fragmentation channels, 
corresponding to multiple neutral losses of ammonia (17 Da), 
hydrogen cyanamide, NCNH2 (42 Da) and hydrogen dicyanamide 
N(CN)2H (67 Da). 
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Scheme 1. Tandem MS analysis of major species constituting the 

precipitate formed during the reaction of DCA ILs with HNO3 (Figures 

1 and 2). Common fragmentation channels include multiple neutral 

losses of ammonia (17 Da), hydrogen cyanamide, NCNH2 (42 Da) 

and hydrogen dicyanamide N(CN)2H (67 Da). 
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The similarity of fragmentation channels suggests structural 
homology of the detected species. Based on the fragmentation 
patterns in Scheme 1, the peak at m/z 127 appears to be an essential 
structural building block for most of the compounds. From high-
resolution MS analysis the only chemical formula associated with 
this signal was calculated to be C3N6H7

+. We propose that the 
identity of this species is protonated melamine based on the reported 
tandem mass spectra for this compound, which contain fragments at 
m/z 110, 85, and 68.[9] We confirmed this assignment by a reference 
experiment on authentic melamine. 

Given the high temperature during hypergolic ignition, we 
propose that the formation of melamine in our experiments proceeds 
via heat-induced reaction of DCA with ammonia to yield 
cyanoguanidine,[10] which on further heating polymerizes into 
melamine,[11] as shown in Scheme 2. Ammonia in our experiments 
presumably originates from thermal decomposition of IL cations. 
Thus, the elimination of ammonia from N-containing cyclic cations 
of DCA ILs has been reported at 300 °C.[12] Alternatively, ammonia 
can be formed during the reaction between DCA and nitric acid via 
dinitrobiuret intermediate.[6] The latter undergoes thermal 
decomposition into HNCO,[13] which is then hydrolyzed to yield 
NH3 and CO2.

[14] The signals at m/z 127, 236, and 345 in Figure 1a 
are separated from each other by 109 Da, indicating the 
polymerization of melamine (Scheme 2). The “dimer” is commonly 
referred to as melam (m.w. 235) and is known to be a product of 
thermal condensation of melamine.[15] Upon heating, melam is 
known to lose ammonia to form melem (m.w. 218).[16] Melem can 
also be generated by thermal treatment of other less condensed C-N-
H compounds, such as melamine, dicyandiamide, ammonium 
dicyanamide or cyanamide.[16, 17] As follows from its fragmentation 
pattern (Scheme 1), the species at m/z 169 consists of melamine with 
cyanamide attached, which can be an intermediate during the 
polymerization of melamine to melam and melem (Scheme 2, m.w. 
168). The species at m/z 152 is formed from m/z 169 by the loss of 
ammonia (Scheme 1). It is probably the only species out of those 
detected in which the s-triazine ring structure is broken (Scheme 2, 
m.w. 151). The signals described above were detected for all the 
DCA ILs tested in this study (see Experimental). 

Most of the peaks in Figure 1a are accompanied by signals 
with a shift of one mass unit. These adjacent peaks have the same 
nominal mass but much stronger relative intensities than those 
expected from 13C isotopes (e.g., see the inset in Figure 1a for a 
doublet m/z 127 – 128). As derived from high-accuracy mass 
measurements, these signals arise from the substitution of NH2 
functionality with OH. For example, the corresponding substituent 
for melamine is referred to as ammeline (Scheme 2, m.w. 127) and 
is readily produced from melamine by hydrolysis in strong acid.[18] 
The presence of OH group was supported by the MS/MS analysis 
that revealed the neutral loss of 18 mass units (water). Upon the 
hydrolysis of triazine compounds to corresponding hydroxyls, the 
latter become visible in negative ion detection mode via 
deprotonation of OH groups (Figure 1b). For example, the peak at 
m/z 126 corresponds to deprotonated ammeline and the peak at m/z 
218 to hydroxy-substituted melem. The latter dominates the 
spectrum in negative ion mode probably because melem is most 
predisposed to hydrolysis to its hydroxy-substituted version. 

Thermal decomposition into melamine-like cyclic azines has 
been reported for a number of energetic materials.[19, 20] For example, 
the formation of melamine, melem, melon, and ammeline has been 
observed from dicyandiamide, diaminoglyoxime and 
diaminofurazan when heated at a rate of 100°C/s at a pressure of up 
to 1000 psi of Ar.[19] DCA ILs with N-containing cations have 

recently been reported to condensate into triazine rings at ~ 500 °C, 
which upon further heating (up to ~ 1000 °C) gave rise to dense 
nitrogen-doped carbon materials.[12, 21] While the high temperature 
accompanying hypergolic ignition is apparently responsible for the 
decomposition of ILs, it is not the only factor to be considered in our 
experiments. Thus, the rapid polymerization observed can also be 
caused by the low pH arising from the high concentration of nitric 
acid.  
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Scheme 2. Proposed structures and mechanisms for the formation of  

the species observed in the reaction between dicyanamide ILs and 

nitric acid. 

 
To explore the reactivity of DCA ILs with nitric acid a set of 

experiments was performed in which various DCA ILs were mixed 
in bulk with aqueous HNO3 (10% vol). Due to the lower 
concentration of components, the reaction was much slower and no 
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ignition occurred. Still, we observed vigorous bubbling, indicating 
release of volatile products, and finally, after ~ 1 min, formation of a 
precipitate. Solid- and liquid-phase products were isolated by 
centrifuging and then analyzed separately. Solution phase was 
diluted in water (×10-3) and then analyzed using direct-infusion ESI-
MS. Figure 2a shows the resulting mass spectrum in negative ion 
detection mode when the DCA IL with the 1-ethyl-3-
methylimidazolium (EMI) cation was used. 

 
Figure 2. Products of the reaction between 1-ethyl-3-

methylimidazolium dicyanamide and aqueous nitric acid (10% vol) 

analyzed by ESI-MS: (a) solution phase (diluted 103 times in pure 

water) analyzed in negative ion detection mode; (b) and (c) are the 

MS of the precipitate (dissolved in ammonium hydroxide) analyzed in 

positive and negative ion detection modes, respectively. 

 
The spectrum is dominated by clusters with the molecular 

composition of [EMI+]n-1[NO3
-]n (n ≥ 1), pointing at the formation 

of [EMI+][NO3
-] salt during the reaction. It can be concluded from 

this observation that HNO3 and [EMI+][DCA-] IL undergo ion 
exchange – EMI+ pairs with NO3

- to form water-soluble salt, while 
DCA- interacts with protons to yield the precipitate (Scheme 2). 
Another important conclusion from Figure 2a is that EMI+ cations 
mostly remain intact, pointing at a relatively low temperature during 
the reaction.[22] 

The precipitate was washed in water and then dissolved in 
ammonium hydroxide (10% vol) for ESI-MS analysis. Analogous to 
the precipitate formed under the conditions of hypergolic ignition 
(Figure 1), the precipitate from the model reaction between DCA 
ILs and aqueous HNO3 also reveals the presence of melamine and 
its oligomers (Figures 2b and 2c), including the one at m/z 454 (m.w. 
453, Scheme 2). However, as follows from the mass spectrum, the 
major polymerization channels are clearly different. For all the ILs 
tested, mass spectra of precipitate are dominated by the signal at m/z 
194 in positive ion mode and m/z 200 in negative. Based on tandem 
MS analysis (Scheme 1), the compound at m/z 194 was found to 
consist of dicyanamide attached to melamine (Scheme 2, m.w. 193). 
This observation points possibly to a lower-energy polymerization 
pathway of melamine than that associated with the intermediate at 
m/z 169 observed under hypergolic conditions (Scheme 2, m.w. 168). 
The signal at m/z 200 was identified as a dicyanamide trimer, known 
as tricyanomelaminate (Schemes 1 and 2). Its synthesis has been 
reported via thermally induced (~ 300 °C) trimerization of alkali 
DCA salts (M = Li, Na, K and Rb).[23] In our experiments, each 
tricyanomelaminate molecule originates from three DCA anions and 

three protons donated by nitric acid, which is in full agreement with 
the ion exchange reaction mechanism proposed above. 

We suggest that the formation of tricyanomelaminate becomes a 
dominant polymerization channel at lower temperatures. At lower 
temperatures, considerably less ammonia is eliminated from IL 
during the reaction, which decelerates the concurrent polymerization 
of DCA into melamine (Scheme 2). 

In summary, we found that various s-triazine compounds are 
generated during the ignition of hypergolic dicyanamide ionic 
liquids with nitric acid, among which we identified melamine and its 
oligomers, e.g. melam and melem. A mechanism was proposed for 
the formation of the major polymers via thermal decomposition of 
DCA ILs, mediated by nitric acid, which competes with the 
hypergolic oxidation mechanism. While our discovery imposes 
certain implications on the use of DCA ILs as bipropellant fuels, it 
demonstrates an interesting approach to facile synthesis of cyclic 
azines, which constitute the forefront of modern carbon nitride 
chemistry.[24] Condensation is readily achieved by mixing DCA IL 
with HNO3 at ambient temperature and pressure. The concomitant 
ignition can be avoided during the synthesis simply by sufficient 
dilution of the oxidizer in water prior to reaction. 

Experimental Section 

Hypergolic reaction was initiated when a drop of WFNA introduced 
from a gastight syringe fell into a small cuvette containing a small 
amount (ca. 0.5 mL) of IL fuel. Liquid was decanted, and the residue 
was centrifuged and washed in water 30 times. The recovered 
precipitate was dissolved in ammonium hydroxide and then directly 
analyzed by ESI-MS in both positive and negative ion detection 
modes. Most MS and MSn (n ≥ 2) analyses were performed on a 
Finnigan LCQ Classic mass spectrometer (Thermo, San Jose, CA, 
USA). Since the efficiency of collision-induced dissociation in LCQ is 
limited by the need to trap fragment ions, for some low molecular 
weight species (m/z < 200) complementary MS2 analysis was carried 
out using a quadrupole time-of-flight instrument (QTOF, Waters, 
Manchester, UK) to provide more abundant fragmentation. High-
resolution mass measurements were done on an Orbitrap Exactive 
mass spectrometer (Thermo, San Jose, CA, USA). DCA ILs with the 
following cations were purchased: 1-butyl-1-methyl-pyrrolidinium, N-
butyl-3-methylpyridinium (EMD Chemicals Inc., Darmstadt, Germany), 
1-ethyl-3-methylimidazolium and 1-butyl-3-methyl-imidazolium (Fluka 
Analytical, Steinheim, Germany). Nitric acid was obtained from Fisher 
Scientific (Hampton, NH, USA) and melamine from Fluka. 
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